Low frequency mechanical actuation accelerates reperfusion in-vitro

نویسندگان

  • Marcin Marzencki
  • Behrad Kajbafzadeh
  • Farzad Khosrow-khavar
  • Kouhyar Tavakolian
  • Maxim Soleimani-Nouri
  • Jaap Hamburger
  • Bozena Kaminska
  • Carlo Menon
چکیده

BACKGROUND Rapid restoration of vessel patency after acute myocardial infarction is key to reducing myocardial muscle death and increases survival rates. Standard therapies include thrombolysis and direct PTCA. Alternative or adjunctive emergency therapies that could be initiated by minimally trained personnel in the field are of potential clinical benefit. This paper evaluates a method of accelerating reperfusion through application of low frequency mechanical stimulus to the blood carrying vessels. MATERIALS AND METHOD We consider a stenosed, heparinized flow system with aortic-like pressure variations subject to direct vessel vibration at the occlusion site or vessel deformation proximal and distal to the occlusion site, versus a reference system lacking any form of mechanical stimulus on the vessels. RESULTS The experimental results show limited effectiveness of the direct mechanical vibration method and a drastic increase in the patency rate when vessel deformation is induced. For vessel deformation at occlusion site 95% of clots perfused within 11 minutes of application of mechanical stimulus, for vessel deformation 60 centimeters from the occlusion site 95% percent of clots perfused within 16 minutes of stimulus application, while only 2.3% of clots perfused within 20 minutes in the reference system. CONCLUSION The presented in-vitro results suggest that low frequency mechanical actuation applied during the pre-hospitalization phase in patients with acute myocardial infarction have potential of being a simple and efficient adjunct therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and simulation of a RF MEMS shunt capacitive switch with low actuation voltage, low loss and high isolation

According to contact type, RF MEMS switches are generally classified into two categories: Capacitive switches and Metal-to-Metal ones. The capacitive switches are capable to tolerate a higher frequency range and more power than M-to-M switches. This paper presents a cantilever shunt capacitive RF MEMS switch with characteristics such as low trigger voltage, high capacitive ratio, short switchin...

متن کامل

Development of a Low Actuation Voltage Rf Mems Switch

This paper reports on the design of a novel ultra low actuation voltage, low loss radio frequency micro-electro-mechanical system (RF MEMS) capacitive shunt switch. The concept of the switch relies on a mechanically unconstrained armature actuated over a coplanar waveguide using electrostatic forces. The minimum actuation voltage of the switch is <2V, with an isolation of 40dB and insertion los...

متن کامل

Size Effect Impact on the Mechanical Behavior of an Electrically Actuated Polysilicon Nanobeam based NEMS Resonator

In this paper, the dynamic response of resonating nano-beams is investigated using a strain gradient elasticity theory. A nonlinear model is obtained based on the Galerkin decomposition method to find the dynamic response of the investigated beam around its statically deflected position. The mid-plane stretching, axial residual stress and nonlinear interaction due to the electrostatic force on ...

متن کامل

Electromechanical Considerations in Developing Low-Voltage RF MEMS Switches

This paper reports on the design, fabrication, and testing of a low-actuation voltage Microelectromechanical systems (MEMS) switch for high-frequency applications. The mechanical design of low spring-constant folded-suspension beams is presented first, and switches using these beams are demonstrated with measured actuation voltages of as low as 6 V. Furthermore, common nonidealities such as res...

متن کامل

Highly Stabilized MEMS Switch with Low Actuation Voltage

This paper presents an innovative design of a low loss RF MEMS switch, with low actuation voltage (VT) & improved mechanical stability. The switch is less sensitive to the stiction and has less damping effect which ultimately increases the reliability of the switch. The specialty of this switch is that its beam is made up of two materials, one gives mechanical stability and other provides the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013